TEE-906 Advanced Combustion Kinetics

Course Objectives

- 1. The objectives of "Advanced Combustion Kinetics" course are:
 - a. To develop fundamental understanding of chemical kinetics relevant for thermal engineering applications
 - b. To develop in-depth understanding of transition state theory and Lindemann theory
 - c. To identify advantages and limitations of various experimental techniques used in chemical kinetics

Course Contents

2. Contents with suggested contact hours

No.	Topics	Contact
		Hours
	Introduction to Chemical Kinetics	
	Reaction Orders	
	Molecularity	
	• Determination of reaction orders and rate	
	coefficients	
a.	A comparison of the techniques	6
	Dependence on temperature	
	• Thermodynamics and its relationship to	
	kinetics	
	Parallel and consecutive reactions	
	Experimental Techniques	
	Classical Techniques	
	Discharge flow	
b.	• Detection technique for discharge flow	6
	apparatus	
	Liquid and stopped-flow systems	
	Flash photolysis	

	Detection technique for flash photolysis experiments	
	Shock tubes	
	 Relative rate determinations 	
	 Relaxation techniques 	
	 Temperature control and measurement 	
	Bimolecular Reactions	
	Collision theory	6
	Transition state theory (TST)	
C.	Thermodynamic formulation of TST	
U.	Experimental evidence for transition state	
	theory	
	Applications of transition state theory	
	Reaction Dynamics	
	Collision of real molecules	6
	 Experimental reaction dynamics 	
d.	 Reaction dynamics and potential energy 	
	surfaces	
	Calculation of kinetic properties from potential	
	energy surfaces	
	Variational transition state theory	
	Unimolecular and Associated Reactions	
	Lindemann Theory	
	Comparison of experimental data with	
	Lindemann theory	
e.	Contribution of the rate of reaction	9
	Hinshelwood-RRK Modifications	
	High pressure limit	
	Low pressure rate coefficient	
	Strong collision assumptions	

	Vibrational energy redistribution	
	Associated reactions	
	Physical basis for association reactions	
	Explosions and Branched Chain Reactions	
f.	Thermal explosion	6
Ι.	Branched chain reactions	0
	Hydrocarbon oxidation	
	Negative Feedback and Oscillatory Behavior	
	Oscillatory behavior in well stirred reactor	
g.	Cool flames	6
	Belousov-Zhabotinskill reaction	
	Representation of oscillatory behavior	
	1	45

Outcomes

- 3. By the end of this course students will be able to:
 - a. Recall the basic concepts of chemical kinetics
 - b. Have in depth understanding of biomecular reactions, unimolecular and association reactions
 - c. Distinguish between numerous experimental techniques used in chemical kinetics
 - d. List the advantages and limitations of numerous laser diagnostic techniques
 - e. Propose experimental setup to perform combustion kinetics measurements
 - f. Details of lab work, workshops practice (if applicable).

4.

Recommended Reading (including Textbooks and Reference books).

	Title	Author(s)	Remarks
a.	Reaction Kinetics	Pilling and Seakins	Text Book
b.	Chemical kinetics	Steinfeld, Francisco and	Reference
	and dynamics	Hase	Book